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ABSTRACT

In time-varying data environments, computational methods like data
mining machine learning are often used to automatically detect
salient changes. For human monitoring and decision-making, these
computationally detected changes need to be effectively communi-
cated to an analyst. Currently, we lack a framework of visual commu-
nication that will allow us to design and evaluate alternative visual-
izations for communicating changes. In this paper, we contribute an
abstraction based framework for designing communication-oriented
visualizations to help analysts detect changes in real-time, with con-
siderations for trade-offs between accuracy and efficiency of user
tasks. We provide empirical evidence and case studies about the
applicability of this framework in practice.

1 INTRODUCTION

Understanding change is a fundamental human task in a time-varying
data environment (e.g., stock market prediction, cyber threat detec-
tion). While computational methods can be used to help detect
important changes, a key challenge is how to communicate these
changes to an analysts so that they can take actions in a timely man-
ner. Changes are often too fast to notice, too many to remember,
and too complex to understand. From a visual communication per-
spective, a key trade-off to address is that between accuracy and
efficiency. When computational methods like a machine learning
classifier is used to detect changes, it is important to convey all
information related to the model output for analysts to gauge the
degree of change accurately. However, for real-time tasks, if human
attention is fixated on complex pieces of information that need a
significant amount of effort for understanding, analysts could be less
efficient in their decisions and miss important changes. Besides the
information encoding aspect, there is also the effect of the human
mental model on how the information is processed and perceived.
Analysts’ mental models depend on their training and background,
and they have different requirements from a visualization. For exam-
ple, a data scientist who wants to evaluate her models would need
a detailed representation of the model uncertainty and the related
parameters, while a domain expert, not typically trained in computa-
tional methods (e.g., a journalist), would need a more abstract and
simpler change representation for understanding its meaning and
context.
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Figure 1: An illustrative example for showing how different visual
encodings influence communication of change. Outcomes from
a reinforcement learning model for solving the inverted pendulum
problem is mapped to the bar charts. In a) each bar represents
a magnitude at a particular time step, while in b) each bar directly
encodes a change in magnitude. In the latter case, the information
about absolute values of the parameters is lost at the cost of speeding
up change detection.

This leads to a key research question: how do we bridge the
gap between computation and visual communication of changes for
systematically addressing the design trade-offs? To address this
question, in this paper, we adapt and extend the visual abstraction
based framework proposed by Viola and Isenberg, in the context of
scientific visualization [16] , to the scenario where a computational
method is used to detect salient changes and the information about
these changes are communicated visually to an analyst.

We ground the abstraction framework in Shannon’s theory of in-
formation communication where information is defined as a measure
of the decrease of uncertainty for the receiver of a message [15]. If
visualization is conceptualized as an information channel, then it
needs to account for uncertainty with respect to how much informa-
tion is encoded and how that information should be decoded in the
perceptual and cognitive mental space of the analyst. These have
been termed as encoding and decoding uncertainty respectively [7].
By instantiating different levels of abstraction with varying levels
of encoding and decoding uncertainty, we are able to systematically
evaluate trade-offs while designing visualizations for change com-
munication. We have two main contributions in this paper. First,
we present an abstraction-based framework in the context of visual
communication of computationally detected changes in time-varying
data. Second, we report on a user study with experts and non-experts
for evaluating the effects of the different levels of abstraction on the



accuracy and efficiency of human change detection tasks.

2 AN ABSTRACTION-BASED FRAMEWORK

Abstraction has been a demonstrated framework for deconstructing
the nature of communication among humans [12]. Data abstraction
has also been a successful concept for bridging the gap between
system-level behavior and programmer’s mental model [9]. By
mapping the concept of abstraction to data visualization, we demon-
strate that visual representations of data and results of automated
methods can be instantiated and evaluated based on different levels
of abstraction. Level of abstraction framework attempts to cap-
ture the necessary and sufficient amount of information that can be
communicated through a visualization along a data-knowledge con-
tinuum [4]. With complex data, such representational primacy is a
limiting notion [1] as in the case of discovery-oriented or high-level
sensemaking tasks data often needs to be modeled in different ways,
and we lack an objective measure of what to present to the user. Fur-
thermore, well known examples such as the London Underground
map [10] clearly demonstrate occasions where a more abstract and
distorted representation of the underlying data can improve usability
and decision making.

Recently, Viola and Isenberg proposed a theoretical framework
on levels of abstraction for illustrative visualizations [16]. We adapt
that framework in the context of visual communication of change,
specifically with the aid of machine learning model predictions. The
central tenets of our framework are the following: i) An abstraction-
based framework should be able to communicate the uncertainty
associated with predictions about change, and ii) The highest level
of abstraction will enable users to notice changes more efficiently
while the lowest level of abstraction will enable users to understand
the degree and significance of changes more accurately.

2.1 Complexity of Change Communication
We consider deep reinforcement learning applied to the inverted
pendulum problem to illustrate how visual communication of change
can aid analysts in understanding model performance (Figure 1). The
inverted pendulum is a classic control problem where the goal is to
balance a rigid pendulum in its inverted, i.e., unstable, configuration.
The input to the system is a small torque, which changes the angular
velocity of the pendulum. The state of the system is characterized
by the x and y coordinate of the pendulum, and its angular velocity,
v. The deep reinforcement learning algorithm attempts to learn the
optimal control policy that maximizes the time the pendulum spends
in the inverted position while minimizing the amount of torque used.

We use this example to show how different choices of change
encoding can affect an analysts’ perception. In case of the inverted
pendulum problem, the learning process is segmented into episodes,
where the model attempts to solve the inverted pendulum problem
starting with random initial conditions. Each episode is a sequence
of state action pairs, where the state is the configuration of the
pendulum, and the action is determined by the model and results in
the next state of the pendulum. Because the state of the pendulum
is described by an (x,y,v) tuple over time, the state sequence is a
multivariate time series.

The task of an analyst is to compare two episodes which represent
two multivariate time series and diagnose time points when there
is a divergence of performance across the episodes. This translates
to a pairwise visual comparison problem, where we can vary how
change is encoded by varying the degree of explicit encoding [11].
In the first case (Figure 1a), a small multiple of bar charts is used to
show the difference between the values, as well as the actual values
over time. For the x variable, a bar is drawn between the value of x1
and x2 at each time step 1 and 2 refer to the first and second episode.
The small black mark in each bar indicates the end of the bar that
corresponds to X1. Here, change is implicitly encoded. The same
technique is also used for y and v in separate multiples. The second

bar chart (Figure 1b) preserves the relative sizes of differences, but
we lose the context of the change, i.e., for what values of x, y, and
v it occurs. Area drawn below zero indicate that a value for that
variable was larger for episode 1 compared to episode 2.

Comparing thee episodes allows us to see when the first episode’s
behavior deviated from the second. For t < 30 both episodes appear
nearly identical. However, between t = 30 and t = 40 a deviation has
occurred – the second system reaches a rest state whereas it appears
that the first overshoots, causing an oscillation that is not recovered
from. In the second bar chart, since change is more directly encoded,
analysts will be able to spot big or small changes faster than they
might be able to using the first bar chart. However, the latter is more
accurate in providing more context to the degree of the changes.

This simple example shows that by controlling explicit encoding,
we can communicate change to an analyst. However, we argue that
for communicating more complex changes, merely accounting for
explicit encoding is not sufficient. This is owing to the following
three reasons. First, in a general scenario, comparisons have to
be performed across many time series and not just a pair of time
series (which are episodes in this case). In such cases, a fully
explicit encoding of change is not possible. Second, the amount
of information that needs to be encoded about a model prediction
might be dependent on a user preference and might not be known
a priori, unlike the inverted pendulum case. Third, there can be
other perceptual factors like clutter or overlap in the visualization,
which can inhibit how clearly visual structures get communicated
to a user. All of these factors necessitate that we have an end-to-
end understanding of how model predictions get translated into
visual channels and ultimately, how these patterns are decoded by a
user. This is the motivation behind our abstraction-based framework,
which we discuss next.

2.2 Visual Uncertainty

Similar to a communication channel, visualization involves encoding
and decoding of information as data gets progressively transformed
in the course of visual mapping, and the subsequent stages of human
perception and cognition. Visual uncertainty has been defined as
the the uncertainty that is associated with a visualization during
encoding (in the screen-space) and decoding of information (in the
mental space of the user) [7, 8]. We argue that different degrees of
encoding and decoding uncertainty, when combined in the context
of an analytical task, can lead to different levels of abstraction while
communicating change. For illustrating this concept, we discuss
a more complex change detection scenario. We assume that the
analyst has trained an ensemble of classification models to catego-
rize a particular system, so there will be one binary classification
model trained per class, and each model reports the probability that
an observation belongs to its class. This results in a probability
time series–one probability per model/class over time. Analysts
need to interpret and compare across this multivariate time-series to
determine when a significant change is occurring. In the following,
we discuss the different sources of encoding and decoding uncer-
tainty at the different stages of the visualization pipeline [5] that
need to be considered for designing visualizations with the goal of
communicating change (Figure 2).
Encoding Uncertainty: At the encoding stage, the first design deci-
sion involves the amount of information about a model prediction
that is included as part of a visualization. Model prediction scores
can be necessary but not sufficient in cases where analysts also want
to know the model confidence behind each prediction. The exclusion
of any relevant information will lead a lack of completeness, while at
the same time, including less information will help analysts in spend-
ing less time on processing the information in a real-time change
detection task. The second design decision for the visual mapping
stage is which visual variables should be used for encoding change.
For example, in the previous bar chart example, change was encoded
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Figure 2: Design considerations for visual communication of change involve different levels of encoding and decoding uncertainty at
the multiple stages of data transformation along the visualization pipeline. High and low levels of encoding and decoding uncertainty can
be systematically combined to instantiate visualizations at different levels of abstraction.

with the position variable, which ensures high accuracy. Change can
also be encoded through retinal variables like size, color etc., in case
position is used to encode some other piece of information. While
using color can sometimes help lead to a pop-out effect and focus
our attention on salient changes [13], it is less accurate than position
can lead to a loss of precision in gauging the magnitude of change.
Decoding Uncertainty: At the decoding stage, a user needs to first
compare changes across multiple time-series to understand where
salient changes have occurred. Tracing changes across multiple time-
series can be impeded if a visualization is cluttered or if there are too
many overlapping time-series, leading to traceability uncertainty.
Finally, at the cognition stage, users should be able to form conclu-
sion based on observation of the patters. In this context, where a
classifier outcome is used as a way to compute information about
changes, pattern complexity can be caused by the lack of familiarity
of a user with machine learning, as the patterns might need domain
expertise for proper interpretation.

2.3 Levels of Abstraction
We systematically combine the different amounts of encoding and de-
coding uncertainty for deciding a level of abstraction (LOA). Levels
of abstraction can be compared for a particular type of visualiza-
tion (e.g., bar chart, line chart, etc.), designed to solve a specific
visual communication task (e.g., change detection). Our LOA frame-
work is exemplified using a line chart example. Different variants of
line charts can be used to instantiate visualizations at different levels
of abstraction. The information we believe is relevant to decision
making in this context is the model confidence (i.e., predicted proba-
bilities), the relative ordering of the models in terms of confidence,
and which models’ confidence are significant (i.e., above an arbitrary
threshold). The visualizations encode time on the horizontal axis,
and as new data arrives, it is appended to the visualization (to the
right) (Figure 3). Each colored line represents a class as predicted by
the machine learning classifier. The thickness of the line at a given
time corresponds to whether that prediction probability is currently
above or below an arbitrary detection threshold – thick lines are
above the threshold, thin lines are below.
High Level of Abstraction: At this level, the encoding uncertainty
is maximum while the decoding uncertainty is minimum. We only
encode the minimal amount of information relevant to the change
detection task using a simple enough representation so that analysts
can readily decode what/when are the most salient changes. This
level aims to maximize efficiency while sacrificing accuracy. As
shown in Figure 3, at the highest LOA, the only encoding is thick-
ness, which shows when the model belief is above or below the
detection threshold. This minimizes decoding uncertainty as one
can directly compare the gray and blue classes and find the time step
when either line is exclusively above the threshold. But potentially

too much information is lost because we don’t know which class is
the most likely if two are simultaneously above the (as is the case
with the blue and red classes). We also may have less ability to
determine when the change has occurred – in the example it appears
to have occurred between step 10 and 16, but we cannot refine this
range with much certainty.

Low Level of Abstraction: The most straightforward and least ab-
stract approach is to directly map the probabilities onto the vertical
axis, so that more likely classes are higher – we consider this tech-
nique to have low abstraction. The thickness of the line encodes
whether the prediction is above the detection threshold. Traceability
uncertainty and pattern complexity increases here as one has to make
multiple comparisons and there are lots of overlapping lines leading
to clutter. This visualization is likely to contain more information
than is necessary for making the determination that an important
change has occurred. We can determine with some certainty that the
change between the blue class and the gray class occurred around
step 11. However, the complexity of the chart increases the difficulty
of making the visual comparison despite decreasing the uncertainty.

In-between or Medium Level of Abstraction: A third alternative
that lies between these two extremes is to encode the rank of each
class on the vertical axis. This approach divides the vertical space
into discrete levels and assigns the most likely model to the top level,
the second most likely model to the second from the top level, etc.
We consider this approach to be at a medium level of abstraction,
as it aims to minimize the loss of information as well as the human
effort to detect a salient change. Because relative rank changes less
quickly than the model belief in this example, the charts appear less
complex compared to the low level abstraction. We can quickly
determine what is the most likely class at any given time by tracing
the top row, which is always in the same position. We can also
quickly find other candidate classes by considering the 2nd, 3rd, etc.
rows that are above the detection threshold, because they are thicker.

By systematically instantiating visualizations along a level-of-
abstraction continuum, analysts can quickly move up and down the
ladder of abstraction and look at different data-driven perspectives
without having to tune low-level parameters and components of the
visualization process. An optimal level of abstraction is one where
we need to lose a certain amount of information to ensure the visu-
alization is expressive [2] about the key patterns and helps amplify
human cognition [3]. This is also closely linked to the inherent
uncertainty in a visual analytics system. Though researchers have
discussed modeling uncertainty in the visual analytics system [6],
the relation between such uncertainty and users’ goals are often
unclear. An abstraction based framework is parameterized by user-
defined goals, and therefore makes an explicit connection between
analytical uncertainty and the insight derived by the user.
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Figure 3: Instantiating visualizations based on levels of abstraction with considerations for design trade-offs. A hypothetical example
where level of abstraction varies based on considerations for encoding and decoding uncertainty. Salient changes are indicated by green arrows.
(a) In the least abstract view, the model belief and likelihood are directly encoded. (b) In the next view the relative ordering of models by belief is
also encoded. (c) In the most abstract view, only whether a model’s belief is above a threshold is encoded. A dotted line indicates information
that is not directly encoded, but implicitly recoverable from the visualization. In high LOA, we only know what is changing, while in case of other
abstraction levels, other change related information, like the degree of change or the most salient changes, can be inferred.

3 EMPIRICAL EVALUATION

We conducted a within-subjects user study to understand the re-
lationship between level of abstraction, user expertise, and user
performance on a the change detection task we described previously.
We recreate a time-varying data environment under controlled con-
ditions for evaluating the effects of different levels of abstraction on
users’ performance. In this section, we describe the rationale behind
the grouping of participants, task selection, metrics and hypotheses,
and the data selection for our experiments. For this experiment we
focus only on the task of change detection.

3.1 Study set up

We chose to employ synthetically generated time series data in order
to a have sufficient level of experimental control to effectively test
our hypotheses. We developed a biased random walk method that
allowed us to take an arbitrary labeled multivariate dataset and gen-
erate a time series of predicted probabilities over the distinct classes
in that dataset. The resulting time series exhibit a subtle change

from one class to another. Our technique gives us enough control
to specify between which pairs of classes the change occurs, and
how quickly the change occurs. All stimuli that participants see are
variations on this same theme, but have different class changes. For
the study discussed in this paper we chose to start with the “Optical
Recognition of Handwritten Digits Data Set” [18], available in the
python scikit-learn package, which has 1797 samples (which are
images of handwritten digits), 64 features (which are pixel intensity
values ranging from 0 to 16), and 10 classes (digits zero through
nine). We recruited participants through mailing lists and word-
of-mouth. A total of 28 participants completed a one-hour user
study. All participants work at a research laboratory, and their job
titles range from research scientists, software engineers, statisticians,
administrators to graduate interns. Based on their self-reported
knowledge and experience in machine learning and visualization,
19 were assigned to the expert group and 9 were assigned to the
non-expert group. We evaluated our visualizations with a high level
task, which we described previously as the “change detection” sce-



nario. In this scenario, a machine learning classifier has been trained
to provide predicted probabilities across a set classes given some
combination of features and values. This classifier has been de-
ployed in a time-varying environment to summarize a system as it
changes over time. The user’s task is to monitor the time series of
probabilities generated by the classifier, and report when a signifi-
cant change has occurred. Often determining “significant change”
will depend on the user’s judgement and interpretation of all of the
predicted probabilities, and is not as simple as picking the class with
the largest probability at a given time. We show the user a visualiza-
tion containing the first few time windows of predicted probabilities.
We allow the user to advance time at their own pace. When time is
advanced, the visualization is built incrementally by revealing data
from the next time step to the right of the existing data. The user
advances the visualization, revealing more time windows, until she
detects a significant change. After the user detects a change, she
indicates the time window in which the change occurred. The user
may have to reveal several windows beyond the actual change event
for the change to become visually salient. Allowing users to advance
the time series themselves eliminates effects related to reaction time
and change blindness that might occur with “live” data.

3.2 Metrics & Hypotheses

We used the following metrics to measure performance: Correctness
measures whether the user entered the correct answer, within one
time window of the ground truth. Time on task is the amount of time
(wall clock) that the user spent during the task. Accuracy is the dif-
ference between the user’s response (where she believes the change
occurred) and the ground truth. Efficiency is the difference between
the number of windows the user reveals, and the ground truth (the
window where the change occurred) Confidence (subjective) is how
confident the user feels that their answer is correct. Understanding
(subjective) is how well the user understood the task.

Visualizations with different levels of abstraction will contain
different amounts of encoded information. We expect the metrics to
reveal performance differences across the level of abstraction. Each
visualization contains sufficient information to solve the task, so
the visualization with the highest level of abstraction contains the
least amount of extraneous information. We expect that the lack of
information in more abstract visualizations will be observable–we
expect users to reveal more time windows before the change becomes
obvious. Once enough windows are revealed, the visualization
should contain enough information to accurately solve the task. We
also expect this to lead users to be less confident in their answers.

The study consisted of three main sections. First, participants
were asked to answer the questions about their demographics as
well as their familiarity and experience in visualization and machine
learning. Second, participants completed the main part of the study
in which participants performed the change detection task with vi-
sualizations at the three different levels of abstraction. We used
the visualizations in Figure 3 for the change detection task for this
purpose. Lastly, participants rated the three different levels of ab-
straction with respect to confidence and understanding. In the main
part of the study, each participant performed the change detection
task 3 times with different datasets for each of the 3 different levels
of abstraction. Thus, participants performed 9 tasks total with a
different dataset used for each of the 9 tasks to prevent participants
from memorizing the answer. Trials were blocked by level of ab-
straction, and the participant received training on how to interpret
the particular visualization before each block. To counter-balance
the experiment, the order of the blocks, and the order of the datasets
within each block were randomized. We used time series between
10 and 50 steps in order to control the difficulty of the task.

−15

−10

−5

0

5

10

Low Mid High
Abstraction

N
um

be
r 

of
 W

in
do

w
s 

(c
ou

nt
)

Efficiency

Figure 4: Difference in efficiency among the levels of abstraction. Low
LOA showed higher efficiency (average: 0.144) than the Mid (-1.223)
and the High LOA (2.045). Participants were less efficient with the
most abstract visualization. Red dots indicate outliers.

4 RESULTS

Because participants were measured more than once on the same
dependent variable, we fit a mixed effects analysis of variance
(ANOVA) model with a normal conditional distribution and random
effects for repeated measures to account for the non-independent
nature of the data [17]. A repeated measures ANOVA model car-
ries the extra burden of an assumption of sphericity (i.e., that the
relationship between pairs of experimental conditions is similar). In
other words, while parametric tests based on the normal distribution
assume that data points are independent, our data points for different
conditions came from the same individuals. Therefore, a Mauchly’s
assumption of sphericity test was applied to determine whether the
relationship between pairs of experimental conditions is similar.
Using Manuchly’s test, the null hypothesis is that the sphericity
assumption is not violated (p-value is greater than 0.5) [14]. We had
three experimental fixed variables: three levels of abstraction (Low,
Mid, and High LOA), a between-subject factor of knowledge and
experience in machine learning and visualization (MVIS–non-expert
and expert groups), and three levels of order. Data were analyzed
using a mixed effects two-way repeated measures ANOVA with
a within-subjects factor of subscale. We measured the main and
interaction effects of the three fixed variables on the four depen-
dent variables (i.e., completion time, efficiency, accuracy, and the
number of correct answers). A model was fit independently to each
dependent variable. We used SPSS for the analysis. Among three
levels of abstraction, significant differences were found in efficiency,
accuracy, and the number of correct answers, as reported below.
Efficiency: According to our definition, better efficiency indicates
that a participant stopped revealing time windows closer to the
ground truth. We tested significant effects from the target variables
on the response variable of efficacy, where the sphericity assumption
was not found to be violated. As a result, no interaction effects were
found, but one of the main effects, LOA, showed a significant effect
(F(2,24) = 6.15, p = 0.002) as depicted in Figure 4. A post-hoc Linear
Discriminant Analysis (LDA) test indicated that Mid LOA and High
LOA differed significantly (p = 0.003) and Low LOA and High LOA
differed marginally (p = 0.08). According to this result, efficiency
decreased as the LOA increased. In general, the participants revealed
more time windows than necessary by a very small amount, on
average, for the Low LOA but revealed fewer windows than needed
for the Mid LOA. On average, the participants revealed 2.5 extra
windows for the High LOA, which means that the participants were
less efficient with the most abstract visualization. Although there
was no significant difference in efficiency between experts and non-
experts (p = 0.20), the expert group generally revealed more windows
beyond the ground truth (average: 1.1 windows), whereas the non-
expert group average was reached before the window in which the
ground truth change occurred (average: -0.5 windows).
Accuracy: There was no violation of sphericity assumption in mea-
suring accuracy. The result showed significant variation in the inter-
action effects between Order and LOAs, F(9,15.9) = 2.404, p = 0.05.
Figure 5 illustrates the difference in accuracy among three levels of
abstractions over time. There was no significant difference among
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It seems that participants struggled the most with the Mid LOA for
any time points beyond the first as the Mid LOA showed the lowest
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note is that the High LOA showed the highest accuracy even with the
lowest efficiency (Figure 4). Red dots indicate outliers.

three levels of abstraction for tasks done first in each block. However,
participants struggled most/had a further distance from the ground
truth with the Mid LOA compared to both the High and Low LOA.
If there was a learning effect then participants should understand
the task better in the second and third task within each block. The
difference in mean distance from the ground truth between the High
LOA and Mid LOA were significantly different with the second task
Order (p = 0.04) and between the Low LOA and Mid LOA were
significantly different with the second and third task (p = 0.08 and
0.04, respectively). This implies the participants struggled the most
with the Mid LOA for any time points beyond the first task.
Correct Answers: We measured the number of correct answers
by the participants. The sphericity assumption was not violated,
and ANOVA results showed significant interaction effects from Or-
der*LOA. Overall, the High LOA showed the most correct answers
(52%), followed by the Low LOA (45%) and Mid LOA (36%). A
significant difference was found in the number of correct answers
between the Low and Mid LOA with the third task in the block (p =
0.035). Participants in the Low LOA answered more correctly over
time (p = 0.05 between 1st and 3rd Order). When we considered
this result with the one from efficiency, interestingly, there was no
significant correlation between efficiency and the number of correct
answers. This indicates that higher efficiency does not necessarily
lead to having more correct answers. This result was especially in-
fluenced by the High LOA as the participants revaled more windows
(Figure 4) for the High LOA but instead answered more correctly.

5 CONCLUSION AND FUTURE WORK

We developed an abstraction-based framework to assist with visual
communication techniques for change detection. The key concept
behind LOA is that information will be lost and uncertainty will
be introduced when data is transformed to a visual representation.
However, loss of information is not always harmful to the user –
sometimes information loss can be beneficial when it highlights
the most task relevant attributes of the data. While this is counter-
intuitive, sometimes “less is more”, where decoding uncertainty
is minimized at the cost of introducing high encoding uncertainty,
thereby reducing the amount of information a user has to process for
a real-time change detection. A limitation of the study may be the
relatively small sample size. We caution that generalizations from
this study are limited due to the relatively small sample size. While
our experiment has focused on time-varying data, we believe our
framework can be to be applied in other contexts and for different
visual encodings. Such encodings could reasonably include scatter
plots, parallel coordinates, stream graphs, etc.

We believe that more abstract visualizations are beneficial when
the combination of data, task, and visual encoding require the user
separate signal from noise in a visual manner. Certainly topological
tasks such as route planning (i.e. shortest path) could be considered

within the LOA framework, as the archetype LOA visualization
is the metro map. Others could include visual search tasks such
as anomaly detection and visual clustering, where the user must
search for something interesting amidst many distractors. For these
tasks, more abstract visualizations might simplify the view enough
such that the task becomes pre-attentive, which we would expect
to significantly improve user performance. The abstraction frame-
work provides us with a systematic way to think about the mapping
between outcomes from computational methods and communication-
oriented visualizations, helping us design visualizations tailored to a
particular task and degree of user expertise.
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[18] L. Xu, A. Krzyżak, and C. Y. Suen. Methods of combining multiple
classifiers and their applications to handwriting recognition. Systems,
man and cybernetics, IEEE transactions on, 22(3):418–435, 1992.


	Introduction
	An Abstraction-Based Framework
	Complexity of Change Communication
	Visual Uncertainty
	Levels of Abstraction

	Empirical Evaluation
	Study set up
	Metrics & Hypotheses

	Results
	Conclusion and Future Work
	Acknowledgment

